Predict Chaotic Time Series Using Minimax Probability Machine Regression
نویسندگان
چکیده
منابع مشابه
Robust Minimax Probability Machine Regression Robust Minimax Probability Machine Regression
We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...
متن کاملA Formulation for Minimax Probability Machine Regression
We formulate the regression problem as one of maximizing the minimum probability, symbolized by Ω, that future predicted outputs of the regression model will be within some ±ε bound of the true regression function. Our formulation is unique in that we obtain a direct estimate of this lower probability bound Ω. The proposed framework, minimax probability machine regression (MPMR), is based on th...
متن کاملRobust Minimax Probability Machine Regression ; CU-CS-952-03
We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...
متن کاملTransductive Minimax Probability Machine
The Minimax Probability Machine (MPM) is an elegant machine learning algorithm for inductive learning. It learns a classifier that minimizes an upper bound on its own generalization error. In this paper, we extend its celebrated inductive formulation to an equally elegant transductive learning algorithm. In the transductive setting, the label assignment of a test set is already optimized during...
متن کاملMinimax Probability Machine
When constructing a classifier, the probability of correct classification of future data points should be maximized. In the current paper this desideratum is translated in a very direct way into an optimization problem, which is solved using methods from convex optimization. We also show how to exploit Mercer kernels in this setting to obtain nonlinear decision boundaries. A worst-case bound on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Technology Journal
سال: 2006
ISSN: 1812-5638
DOI: 10.3923/itj.2006.529.533