Predict Chaotic Time Series Using Minimax Probability Machine Regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Minimax Probability Machine Regression Robust Minimax Probability Machine Regression

We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...

متن کامل

A Formulation for Minimax Probability Machine Regression

We formulate the regression problem as one of maximizing the minimum probability, symbolized by Ω, that future predicted outputs of the regression model will be within some ±ε bound of the true regression function. Our formulation is unique in that we obtain a direct estimate of this lower probability bound Ω. The proposed framework, minimax probability machine regression (MPMR), is based on th...

متن کامل

Robust Minimax Probability Machine Regression ; CU-CS-952-03

We formulate regression as maximizing the minimum probability (Ω) that the true regression function is within ±2 of the regression model. Our framework starts by posing regression as a binary classification problem, such that a solution to this single classification problem directly solves the original regression problem. Minimax probability machine classification (Lanckriet et al., 2002a) is u...

متن کامل

Transductive Minimax Probability Machine

The Minimax Probability Machine (MPM) is an elegant machine learning algorithm for inductive learning. It learns a classifier that minimizes an upper bound on its own generalization error. In this paper, we extend its celebrated inductive formulation to an equally elegant transductive learning algorithm. In the transductive setting, the label assignment of a test set is already optimized during...

متن کامل

Minimax Probability Machine

When constructing a classifier, the probability of correct classification of future data points should be maximized. In the current paper this desideratum is translated in a very direct way into an optimization problem, which is solved using methods from convex optimization. We also show how to exploit Mercer kernels in this setting to obtain nonlinear decision boundaries. A worst-case bound on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Technology Journal

سال: 2006

ISSN: 1812-5638

DOI: 10.3923/itj.2006.529.533